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Abstract
A model neuron with delayline feedback connections can learn a time series
generated by another model neuron. It has been known that some student
neurons that have completed such learning under the instruction of a teacher’s
quasi-periodic sequence mimic the teacher’s time series over a long interval,
even after instruction has ceased. We found that in addition to such faithful
students, there are unfaithful students whose time series eventually diverge
exponentially from that of the teacher. In order to understand the circumstances
that allow for such a variety of students, the orbit dimension was estimated
numerically. The quasi-periodic orbits in question were found to be confined
in spaces with dimensions significantly smaller than that of the full phase
space.

PACS numbers: 05.45.−a, 07.05.Mh, 84.35.+i

1. Introduction

A single neuron or a network of neurons with delayline feedback connections generates
time series autonomously. Recent studies have revealed various interesting characteristics of
sequence generators of this kind [1, 2]. A model neuron with a monotonic transfer function
can generate a sequence that is stationary (fixed), periodic or quasi-periodic. In addition, there
are tiny parameter regions in which low-dimensional chaotic sequences are generated (so-
called fragile chaos) [3]. In contrast, a model neuron with a nonmonotonic transfer function
can generate a high-dimensional chaotic sequence (robust chaos) [4], in addition to the fixed,
periodic or quasi-periodic sequences.

A model neuron (student) can also learn a time series generated by another model neuron
(teacher). Recently Freking et al [5, 6] performed a numerical study and reached the following
conclusions: (A) a student neuron trained with a quasi-periodic sequence does not obtain much
information about the teacher neuron, but it can mimic the teacher’s time series over a long
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interval; (B) a student neuron trained with a high-dimensional chaotic sequence obtains almost
complete knowledge about the teacher, but it cannot mimic the teacher’s time series over a
long interval.

We performed a detailed numerical study for the neuron-to-neuron instruction. We have
two main results. First, we obtain an understanding of the mechanism with which we can
explain (A) and (B). In the case that the generated sequence is quasi-periodic, the neuron’s
internal states are confined to a lower dimensional sub-space of the full phase space, and this
is the reason why the student does not acquire much information about the teacher. In the case
that the generated sequence is chaotic, the neuron’s internal states occupy the full dimension of
the phase space, and therefore, in the course of the instruction, the student acquires information
about all aspects of the teacher.

Our second main result is that we have found phenomena that are inconsistent with the
above conjecture (A). With this finding, we propose the following revised version:

(A′) A student neuron trained with a quasi-periodic sequence does not obtain much
information about the teacher. Students can be classified into two types: (1) faithful
students that are able to mimic the teacher’s time series over a long interval even
after instruction has ceased, and (2) unfaithful students whose time series diverge
exponentially from that of the teacher.

2. The model neuron

We consider sequence generators that are represented by recurrence equations of the form

st = f

(
N∑

i=1

wist−i

)
(1)

where f (x) represents the neuron’s nonlinear transfer function, and w = (w1, w2, . . . , wN)

is a weight vector characterizing the weights of delayline connections from its output. We
consider a single value of the order of recurrence (or the dimension) N = 20 throughout
the present paper, but the features of the results do not depend on the choice of the
dimension.

We first considered the case of a monotonic transfer function, f (x) = tanh(βx), in which
β represents the input gain. We chose the value of each weight element wi randomly from
a normal distribution with mean 0 and variance 1/N . Therefore, the norms of the weight
vectors will be distributed around 1. We chose β = 1, because with a smaller value there is a
tendency towards the trivial fixed point st = 0, and with a larger value there is a tendency for
the sequence to become quasi-discrete st ∼ ±1. We chose 25 weight vectors of dimension
N = 20 to observe the characteristics of the sequence generators. We found that in one case
the sequence converged to the trivial fixed point st = 0, in two cases it converged to nonzero
fixed points, in two cases it exhibited period-two oscillation and in 20 cases it exhibited a
quasi-periodic sequence. Figure 1 displays a sample quasi-periodic sequence. We checked by
applying small disturbances that all the asymptotic orbits are locally stable. As discussed in
[3, 4], the range of parameter values for which there is chaotic behaviour for this monotonic
transfer function is very small. In fact, chaotic sequences were not encountered in any of
the many simulations we carried out. In addition, we observed that many of those sequence
generators have multiple stable attractors. In any case, for each trial, we used only one
sequence generated by the teacher as the training sequence.
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Figure 1. The map of st versus st−1 for the asymptotic quasi-periodic sequence generated by a
teacher. Sequences generated by faithful students are indistinguishable from this.

3. Learning quasi-periodic sequences

We consider only the situation where the teacher and student have the same transfer function.
The learning is carried out with the online gradient descent method, in which the student
repeatedly adjusts its weight vector so as to cause its output to be as close as possible to the
teacher’s output [7]. During the learning stage, st is generated for both the teacher and the
students by inputting the vector representing the most recent N values of the teacher’s time
sequence, in f, (st−1, st−2, . . . , st−N ). We monitored the average deviation of the student’s
output ot from the teacher’s output st which is obtained for the common inputs,

ε = 1

T

t0+T∑
t=t0+1

|st − ot | (2)

for every time interval of length T = 20. The learning was stopped if the condition ε < 10−3

was satisfied for 50 000–100 000 consecutive time steps. The length of the sequence necessary
to realize this level of learning varies from case to case, but it was always more than one million,
and typically about five million. After the learning, we determined how closely the student’s
final weight vector wS approximated the teacher’s weight vector wT .

In each trial, one teacher taught multiple students. The initial weight vector of each
student was chosen randomly according to the same prescription as used for the teacher. All
the students eventually succeeded in learning to the level specified above. After the criterion
for successful learning was satisfied, the student was allowed to proceed independently, by
now using its own output for st−i in f of equation (1). We then observed how the deviation
between the teacher and the student evolved.

It was found that the sequence produced thereafter by many students deviated from the
teacher’s sequence linearly in time and remained close to it for a long period. Despite this slow
divergence of the student’s time series from the teacher’s time series, it is found that there are
in fact significant differences between the final student weight vectors and the teacher weight
vector. These results are consistent with conjecture (A).

4. Numerical estimate of orbit dimension

If the teacher’s asymptotic internal states are confined to a space of dimension M, smaller than
the dimension N of the full phase space, then the components of the weight vector orthogonal
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to this space are irrelevant, and are free from the learning pressure that acts on the students’
weights. In order to confirm whether the teacher’s asymptotic quasi-periodic orbit is indeed
confined to such a smaller space, we attempted to determine the spatial dimension of the
internal state distribution of the teacher neuron according to the following prescription.

(i) Generate an N-dimensional vector from the sequences as st = (st , st−1, . . . , st−N+1).
Construct an N × N matrix S from N consecutive vectors,

S = (st , st−1, . . . , st−N+1)
t . (3)

If these N vectors are linearly dependent, the determinant of S vanishes. Due to numerical
error, it is not feasible to realize a value of exactly zero in a calculation, but a very small
absolute value of this determinant can be interpreted as indicating linear dependence.

(ii) For a given value of M < N , consider all of the M × M matrices that can be obtained
by removing N − M rows and N − M columns from S. If the N vectors in question
span M-dimensional space, there is at least one such M × M matrix that has a nonzero
determinant. This procedure is carried out for M = N − 1, N − 2, . . . , until an M × M

matrix with nonzero determinant is found.
(iii) Rather than carrying out such calculations for all M × M matrices of the kind described

above (which would be much too numerous for the values of N = 20 used in actual
simulations), for a given value of M, we randomly chose 10 000 matrices. We then
judged whether the N vectors span an M-dimensional space by determining if any of those
determinants was significantly large to be considered nonzero.

The significance level for judging a determinant to be vanishing or nonvanishing was
empirically determined to be 10−5 by applying the above procedure to prepared samples
whose dimensions were already known. In studying these prepared samples, it was also found
that the procedure is effective in determining the actual dimension.

We applied this method to the quasi-periodic sequences that were generated by 20 teachers.
The dimensions M of those 20 quasi-periodic sequences were found to range from 4 to 13,
significantly smaller than the dimension of the full phase space, N = 20. The most common
dimension was M = 6 (found in six cases). Each training sequence was used to teach 20
students. We also determined the dimension L of the space spanned by those weight vectors,
using the same method. Their dimensions were found to range from 5 to 14. In 9 of the 20
cases, the dimension of the training sequence and the dimension of the student weight vectors
were approximately complementary, satisfying M + L = N ± 2. In other cases, however,
M + L was significantly smaller than N. In the smallest case, M + L = 13.

5. Unfaithful students

All the students eventually passed the learning criterion (i.e. realized ε < 10−3), which means
that they were able to make short-range predictions with sufficient precision. When the
students are freed from the teacher’s supervision, many of them remain close to the teacher’s
sequence, and the deviation develops linearly in time, as mentioned above. However, we found
that there are students that deviate from the teacher’s sequence and asymptotically generate
sequences that bear no resemblance to the teacher’s sequence. Figure 2 depicts the sequence
of such an unfaithful student resulting from the training sequence displayed in figure 1.
We found that the deviation from the teacher’s sequence grows exponentially in this case
(see figure 3). We refer to these two groups of students as ‘faithful students’ and ‘unfaithful
students’.
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Figure 2. The map of st versus st−1 for the sequence generated by an unfaithful student after the
learning has ended. After transients, the system enters an orbit that bears no resemblance to the
teacher’s orbit, shown in figure 1.
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Figure 3. Evolution of the deviation between the student and teacher, after the students are freed
from the teacher’s supervision. The deviation for the faithful student, depicted in figure 1, exhibits
a linear increase and that for the unfaithful student, depicted in figure 2, exhibits an exponential
increase. In those cases, the learning was performed until ε < 10−5.

The students’ initial weight vectors were generated according to the same prescription as
the teacher’s weight vectors: each element wi was chosen randomly from a normal distribution
with mean 0 and variance 1/N . We found that among 20 teachers, nine had at least one
unfaithful student out of 20 students. The number of unfaithful students ranged from 0 to 9.
The average fraction of unfaithful students was 30/400.

The maps that have sufficiently large weight vectors would have their own stable and
unstable orbits. In the learning process they modify their weight vectors according to the
instruction. In some cases they readjust their stable orbits to the teacher’s orbit, but in other
cases they may readjust their unstable orbits. We interpret unfaithful students as representing
the situation in which the student was able to adjust an unstable orbit to the teacher’s stable
orbit. The student initially keeps close to the teacher’s sequence, but the deviation from the
teacher’s sequence develops exponentially in time. Whether or not such a phenomenon occurs
depends on the nature of the training sequence and the initial student weight vector. We have
also investigated the case of a student with initial weight vector w = (0, 0, . . . , 0), with which
a neuron generates only the trivial stationary fixed sequence st = 0. We found that all 20
teachers succeeded in making this student faithful. In these cases the students, which have
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Figure 4. The map of st versus st−1 for the asymptotic chaotic sequence generated by the transfer
function 1/cosh(βx), with β = 4.

each only one stable fixed point, start to generate stable quasi-periodic orbits according to the
instruction and succeed in attaining the desired stable orbit.

It is also worthwhile to see how the learning is perturbed by the noise entered in the transfer
process of the teacher’s signals. We confirmed that the students could learn the teacher’s orbit
within an accuracy bounded by the noise level and become either faithful or unfaithful. By
increasing the noise level, some of the students that are originally destined to be unfaithful in
the noiseless limit, turn out to be faithful, while the opposite case was not observed. It should
be noted, however, that the students may remain unfaithful even in the presence of (low-level)
noise.

A neuron with a weight vector given by a linear combination of two students’ final weight
vectors,

w = cw1 + (1 − c)w2 (4)

should satisfy the learning criterion, because both students have satisfied the learning criterion,
which means that both w1 and w2 must be almost identical to the teacher’s weight vector in the
sub-space of dimension M(<N) in which the internal states are confined. We tested the ability
to remain close to the teacher’s time sequence of a hybrid neuron with the weight vector given
by equation (4). Interestingly, we found that hybrid neurons generated from two unfaithful
students were unfaithful in some cases but not all. Conversely, hybrid neurons generated from
two faithful students were faithful in some cases but not all.

6. Learning chaotic and quasi-periodic sequences with nonmonotonic transfer function

We also examined the case of a nonmonotonic transfer function, f (x) = 1/cosh(βx). For
small β, the recurrence equation (1) generates a stationary (fixed) sequence. As β increases,
the sequence becomes periodic or quasi-periodic, and above a certain critical value of β, it
becomes chaotic (see figure 4). Considering a chaotic sequence, we confirmed conjecture (B):
after learning is completed, the student’s and teacher’s weight vectors were almost identical
wS ≈ wT or opposite, wS ≈ −wT , which happens due to the mirror symmetry of the function
1/cosh(βx). However, when the teacher’s supervision ceases, the student’s sequence rapidly
deviates from the teacher’s.

Again in this case we determined the dimension of the training sequence using the method
described above. We used a number of orbits and found in each case that M ≈ 20 the full
dimension. This means that during the learning process, all components of the student weight
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Figure 5. The map of st versus st−1 of the asymptotic quasi-periodic sequence generated by the
transfer function 1/cosh(βx), with β = 1.5.

vector are subject to the learning pressure, and only the overall sign remains arbitrary. The
student time series eventually becomes quite close to the teacher time series. However, the
resulting orbit is unstable. For this reason, after the learning process has been terminated,
because there will inevitably be a finite difference between the teacher’s and student’s weight
vectors there will also be a finite difference between their time series, and the difference will
grow exponentially in time, reflecting the chaotic nature of the orbits.

The transfer function f (x) = 1/cosh(βx) can also generate quasi-periodic sequences
if a moderate value of β is used. Figure 5 depicts a quasi-periodic sequence that bears no
symmetry. We also carried out a numerical study of this case to determine if the behaviour
described by (A′) is observed for this kind of nonmonotonic transfer function. We found that
the conclusion is unchanged. In particular, a teacher can produce both faithful and unfaithful
students. One difference between the nonmonotonic case and the monotonic case studied
above is that in the present case the final orbits of unfaithful students can be either stable
quasi-periodic sequences or unstable chaotic sequences.

7. Discussion

In the present paper we have studied numerically the learning of time series through neuron-
to-neuron instruction. First, we have confirmed the knowledge reported by Freking et al [5, 6]
and performed the numerical analysis to determine the dimension of the quasi-periodic orbit
in question. The orbit dimension was found to be significantly smaller than that of the full
phase space. This is consistent with the fact that the learning of a quasi-periodic sequence
does not fully determine the weight vector.

Second, we found that in addition to the faithful students, which mimic the teacher’s time
series over a long interval, there are unfaithful students whose time series diverge exponentially
from that of the teacher. Both faithful and unfaithful students can reproduce the teacher’s time
series during the learning period. When the students are freed from the teacher’s supervision,
the faithful students stay in orbits that are almost identical to the teacher’s orbit, while the
unfaithful students eventually enter into individual orbits that are completely different from
the teacher’s orbit. This evidence is also consistent with the above-mentioned fact that the
orbit is confined to a lower dimensional sub-space of the full phase space: the learned orbit
could have been made unstable to the orthogonal direction to the space of the learned orbit.
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In addition, we have tested to see whether or not unfaithful students are fragile to the
noises. The unfaithful students may turn faithful in the presence of high-level noise, but they
stay unfaithful in the presence of low-level noise. We also have observed unfaithful students
in the learning with a nonmonotonic transfer function. These results imply that the emergence
of unfaithful students could be seen in the more general context of time-series learning.
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